
A poor manÕs FROG

C. Radzewicz a,*, P. Wasylczyk a, J.S. Krasinski b

a Optics Division, Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw, Poland
b Electrical and Computer Engineering, Center for Laser and Photonics Research, Oklahoma State University,

Stillwater, OK 74078 USA

Received 7 March 2000; received in revised form 7 September 2000; accepted 18 October 2000

Abstract

In this communication we present a new method for recording a two-dimensional second harmonic spectrogram of a

femtosecond laser pulse. Filtering of the second harmonic signal due to phase matching in a thick nonlinear crystal is

used to spectrally resolve the second harmonic autocorrelation. Amplitude and phase of a pulse can be retrieved from

the spectrogram using a standard frequency resolved optical gating iterative algorithm. Ó 2000 Published by Elsevier

Science B.V.
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1. Introduction

While we are able to generate shorter and
shorter light pulses and femtosecond lasers became
available to a wide group of potential users, there is
a continuous search for a simple, fast and reliable
method capable of characterizing ultrashort laser
pulses. There has been much work done in this area
in the past, yet out of many di�erent methods
proposed [1±5] only two schemes are, at the mo-
ment, commonly used for complete amplitude and
phase measurement of the pulse electric ®eld.

In a recently introduced spectral phase inter-
ferometry for direct electric-®eld reconstruction
(SPIDER) method [6] an interferogram made of

two frequency-shifted pulse replicas is recorded.
The method requires quite a complex optical set-
up and relatively high pulse energies. Its advantage
lies in a noniterative, unambiguous and fast nu-
merical procedure used to retrieve the spectral
phase from the experimental data.

Frequency resolved optical gating (FROG)
method [7] has been introduced about a decade
ago and it has been extensively tested since. It is
based on measuring spectrally resolved autocor-
relation function ± a spectrogram. An iterative
algorithm [8] retrieves the electric ®eld from the
two-dimensional spectrogram. The apparatus here
is just an autocorrelator (CW or single shot) with a
spectrograph attached to its output. Extremely
low-energy pulses can be measured if a second
order process is used for the autocorrelation gen-
eration but at the cost of time direction ambiguity.

In a typical single-shot second harmonic FROG
(SH FROG) set-up, two pulse replicas overlap
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spatially and temporarily in a nonlinear crystal.
If the wavefronts intersect at a small angle, dif-
ferent positions along the axis perpendicular to
the propagation direction correspond to di�erent
delays between the pulses. The second harmonic
spatial pattern is imaged onto the spectrometer
entrance slit, and the resulting two-dimensional
image is recorded with a CCD camera. When
femtosecond pulses are to be measured, one nec-
essarily deals with a broad spectrum. Therefore in
a standard SH FROG set-up a nonlinear crystal
thin enough to provide su�cient bandwidth for
second harmonic generation must be used. On the
other hand, one can make use of a thick crystal
®ltering properties to achieve spectral resolution
without any additional wavelength-selective de-
vice.

2. Intensity autocorrelation function with a thick

crystal

Consider a single-shot SH FROG with a type I
phase matching in a negative birefringent nonlin-
ear crystal. Two replicas of the measured pulse
propagate as ordinary waves while the sum-
frequency pulse propagates as an extraordinary
wave. We will use the term sum-frequency rather
than second harmonic throughout this paper re-
serving the latter name for frequency- and space-
degenerate process. If the crystal is thin enough
then phase matching is possible for all the spectral
components of the input waves and the signal
(sum-frequency) wave Es is given by

Es s� � � j
Z �1

ÿ1
E t� �E t� � s�dt �1�

where E t� � is the complex amplitude of the mea-
sured pulse, j is a constant, and the delay s varies
along the direction perpendicular to the propaga-
tion direction (Fig. 1a). In such a set-up one
measures the spatial distribution of the signal wave
intensity which is proportional to the background-
free intensity autocorrelation function.

If, however, the crystal is thick then Eq. (1) does
not apply because of the bandwidth limitations
resulting from phase matching. In a single-shot SH
FROG set-up the two input beams propagate at a
small angle with respect to each other, and the
phase-matching condition is then written in the
form: k�x1� � k�x2� � k�x3� (Fig. 1b). For well
collimated input beams the directions of the wave
vectors k(x1) and k(x2) are ®xed. Still, their
lengths can vary because of a signi®cant spectral
bandwidth of those pulses. If the angle a between
the vectors k(x1) and k(x2) is small (the angle in
Fig. 1b is strongly exaggerated) and the pulse
bandwidth is small compared to the central fre-
quency then, to the ®rst approximation, the di-
rection of k(x3) is also ®xed. This noted, one can
see that for small values of a the phase-matching
condition is approximately the same as that for a
collinear sum-frequency generation.

In order to see how the ®nite bandwidth of the
crystal in¯uences the signal measured in a SH
FROG set-up we have numerically calculated the
e�ciency of the collinear sum-frequency genera-
tion process in a 3 mm thick KDP crystal. The

Fig. 1. The idea of the single-shot autocorrelation measurement. (a) Two pulse replicas intersect within a nonlinear crystal (dimensions

not to scale). The delay between the pulses varies along the axis perpendicular to the pulse propagation direction. Also shown is the

crystal rotation direction for the sum-frequency spectral component selection. (b) Phase-matching condition for type I sum-frequency

generation.
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results are shown in Fig. 2. In this ®gure, the sum-
frequency generation e�ciency g x1;x2� � is plotted
versus two input frequencies x1 and x2. The e�-
ciency is proportional to sinc2 x� � with x de®ned as
x � k x1� � � k x2� � ÿ k x3� �� �L=2, where k xi� � is the
magnitude of the wave vector for the ith wave, L
is the crystal thickness and the energy conserva-
tion condition de®nes x3: x3 � x1 � x2. In the co-
ordinate system shown in the ®gure, ®xed output
frequencies x3 � const� � correspond to straight
lines at ÿ45° with respect to x1 axis. This feature
can be used to estimate the bandwidth of the sum-
frequency generation process in the following way.
Tuning a single frequency input corresponds to
moving along the line x1 � x2 on the x1, x2 plane.
In this case only a ®nite-width range of input fre-
quencies can be e�ciently converted into the sum-
frequency wave and, consequently, the range of
output frequencies is also limited. Similar band-
width limitations will be imposed on the output in
the case of broadband input pulses, however any
pair of input frequencies x1 and x2 can be e�-
ciently converted as long as the sum x1 � x2 stays

within the window de®ned by the crystal phase-
matching properties. For the particular case
studied here (a 3 mm KDP crystal and frequencies
corresponding to 700±900 nm wavelength range)
the constant intensity contours can be very well
approximated by straight lines at ÿ45° with re-
spect to x1 axis.

This result can be understood as follows. The
two input waves can drive nonlinear polarization
in the crystal at any frequency allowed by their
bandwidths; however, only a limited range of
spectral components of this polarization is fa-
voured by phase-matching condition. To calculate
the spectral width of the output wave in the case of
broadband input waves one should make a pro-
jection of g x1;x2� � onto a plane perpendicular to
the x1, x2 plane and containing x1 � x2 line. In
our particular case an almost identical result is
obtained by taking a cross-section of g x1;x2� �
along x1 � x2 line. Such a cross-section is shown
in the inset in Fig. 2. This curve can be used to
estimate the width of the spectral window due to
the application of a thick SHG crystal, which for
our 3 mm KDP is approximately 2 nm FWHM.

The choice of the crystal thickness is limited, on
one hand, by the desired spectral resolution and,
on the other hand, by the crystal dispersion. The
spectral resolution increases with the crystal
thickness but so does the pulse distortion due to
group velocity dispersion. To estimate the pulse
broadening we have calculated that for the 3 mm
KDP crystal considered here, a 30 fs (FWHM),
800-nm-centred Fourier limited pulse is stretched
to approximately 31 fs after propagation through
the crystal. For our diagnostic applications, such
distortion is still at the acceptable level. The cal-
culations for BBO, LiIO3 and KDP show that
for crystal thickness leading to the above pulse
broadening the spectral resolution is almost the
same. Thus, the choice of nonlinear crystal is not
critical in our method.

To conclude this section, using a nonlinear
crystal with properly chosen thickness in a non-
collinear second harmonic autocorrelator is equiv-
alent to using a system containing a thin nonlinear
crystal and a spectral ®lter acting on the out-
put wave, i.e. a system required for SH FROG
measurements.

Fig. 2. Calculated normalized e�ciency of the collinear sum-

frequency generation in a 3 mm thick KDP crystal as a function

of two input frequencies. The contours are plotted for the

values of 0.05, 0.1, 0.2, 0.5 and 0.75. Laser spectra are displayed

on the frequency axes. The inset shows x1 � x2 cross-section.
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3. Experiment and results

To characterize pulses from a home-built fem-
tosecond Kerr lens mode-locked Ti:Al2O3 laser, we
have built a standard single-shot autocorrelator
with a 3 mm thick KDP crystal. Second harmonic
intensity spatial distribution in the crystal output
surface is imaged onto a 1 in. 1024 element linear
CCD detector. The crystal can be rotated around
the axis perpendicular to the laser beamsÕ propa-
gation direction, and each angular position cor-
responds to e�ective second harmonic generation
within a certain wavelength range and therefore to
a speci®c spectral component of the autocorrela-
tion function. The autocorrelations measured for
di�erent angles are then combined to give a two-
dimensional wavelength-delay spectrogram.

To calibrate the system, the spectra of the
autocorrelation function were recorded for di�er-
ent angles of crystal rotation, and the position of
the maximum was measured for each spectrum.
The results are presented in Fig. 3. The Ôspectral
resolutionÕ determined by the spectraÕs width is a
free parameter that can be set by appropriate
choice of the nonlinear crystal and its thickness.
With a 3 mm thick KDP crystal, the resolution is
approximately 2 nm at 800 nm which is consistent
with results presented in the previous section. This
resolution is worse than that of a good spectro-

meter but still su�cient for our purposes. As the
FROG algorithms use equal spacing on the
wavelength axis, the linear angle-wavelength de-
pendence was assumed, a good approximation for
small angle range used in the experiment. The
spectral calibration has to be done only once. Once
recorded, it can be used in all the subsequent
measurements.

The temporal calibration of the autocorrelator
was performed in a standard way by introducing a
known delay into one of the input beams and
measuring the spatial shift of the autocorrelation
trace.

To characterize laser pulses, a set of 15 auto-
correlations was recorded for di�erent crystal an-
gles ranging from ÿ1:4° to �1:4° around an
arbitrarily chosen ÔzeroÕ position in steps of 0.2°.
We arranged the autocorrelations, each consisting
of 63 points, as columns of a 15� 63 matrix. From
this matrix the spectral amplitude and phase was
retrieved using a standard iterative FROG algo-
rithm running on PC. The results are shown in
Fig. 4.

The Ti:sapphire laser was initially set to get
reasonably short pulses with a standard CW auto-
correlator. Still, as one can see in Fig. 4, there is
a signi®cant quadratic component present in the
spectral phase. This is consistent with the fact that
the pulse duration FWHM (approximately 50 fs) is
1.6 times the transform limit. As a simple consis-
tency check, we veri®ed ®rst that the spectral am-
plitude retrieved with our method is in a good

Fig. 3. Wavelength of the second harmonic spectrum maxima

versus crystal angular position with a ®tted linear dependence.

One of the SH spectra is shown in the insert. The spectrum

width FWHM is approximately 2 nm.

Fig. 4. Spectral amplitude and phase for pulses from a femto-

second Ti:sapphire laser obtained with a standard FROG

method (±±) and a poor manÕs FROG method ( and ).
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agreement with the laser spectrum which was
measured independently with a spectrometer.

As we have mentioned in the previous section,
using a thick nonlinear crystals can result in some
distortion of the input pulses as they propagate in
a dispersive medium because of the group velocity
dispersion. This in turn could distort the FROG
spectrogram leading to errors in the retrieved
spectral amplitude and phase. In order to check
whether this e�ect is signi®cant in our experiment
we have used a standard SH FROG set-up with a
200 lm thick KDP crystal and 150 mm imaging
spectrometer to characterize the pulses from our
Ti:sapphire oscillator. Fig. 4 shows the compari-
son between the spectral amplitude and phase of
the laser pulses retrieved from a standard SH
FROG and a poor manÕs FROG. The FROG er-
ror [9] was 0.0019 for poor manÕs FROG com-
pared to 0.00079 for the standard FROG. As one
can see the overall agreement between the results
obtained with the two methods is very good. The
spectral amplitudes agree to within a few percent
while the spectral phases are the same with accu-
racy better than 0.06 rad over the whole spectrum.
We conclude from those results that, in our ex-
periment, the group velocity dispersion e�ects due
to the thick nonlinear crystal are not very impor-
tant and do not lead to appreciable errors in the
results.

4. Conclusions

In conclusion, we have demonstrated a new,
simple method which allows to record spectrally
resolved second harmonic autocorrelation func-
tion of femtosecond laser pulses in a very simple
and inexpensive experimental set-up. The method
relies on spectral ®ltering introduced by a thick

nonlinear crystal. To our best knowledge, the
system presented in this paper is the simplest and
least expensive apparatus capable of full diagnos-
tics of femtosecond laser pulses.

The amplitude and phase of 50 fs pulses from a
Ti:sapphire laser were retrieved from two-dimen-
sional experimental data using a standard FROG
iterative algorithm. We have compared the results
obtained from our method with those from a
standard SH FROG and found a very good
agreement indicating that our method indeed
returns correct values of spectral amplitude and
phase of femtosecond laser pulses.
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